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Syndecan-4: Dispensable or indispensable?
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Studies examining the role of the cell-surface heparan sulfate proteoglycan syndecan-4 have yielded a plethora of infor-
mation regarding its role in both cell-matrix and growth-factor mediated signaling events. Many of the initial conclusions
drawn from such research placed syndecan-4 in a keystone position within various signaling pathways though the gener-
ation of syndecan-4 null mice have surprised many in the field by indicating otherwise. These contradictory results place
researchers in the frustrating and yet exhilarating position of still asking the question, “What role does syndecan-4 play
in life?”
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Introduction

When Merton Bernfield described the first syndecan family
member [1], he initiated the formation of a complex and often
contradictory field in cell biology. Biologists who study the
syndecans may likely feel akin to the Indian folktale of 6 blind
men and the elephant (poetized by John Godfrey Saxe [2]).
Each laboratory is able to conclusively show an interaction or
activation/inhibition that occurs optimally in the presence of a
syndecan and results in a dramatic change in cell behavior-but
linking these observations together to make a coherent “animal”
is much more difficult. To add to this confusion, the generation
of knock-out mice for 3 of the 4 family members (syndecan-1,
-3 and -4) have not easily rectified this problem. Syndecan-3
deficient mice exhibit slight defects in the hippocampus but are
otherwise healthy [3,4] and neither syndecan-1 nor syndecan-
4 null mice display overt morphological defects upon initial
observation [5,6].

Given the enormous volume of research others and we have
dedicated to this field, the lack of a dramatic effect upon gene
deletion was surprising. The results led many to the thought
exemplified by the title—are these molecules, in our case
syndecan-4 in particular, dispensable as the in vivo data would
initially suggest, or indispensable, as attested to by years of bio-
chemical and molecular study. We believe, not without a little
bias, that although syndecan-4 may not be necessary for life it is
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very important for survival. Only time will tell if our hypothesis
holds and if it is applicable to the other syndecan family mem-
bers. In the meantime we are grateful to Merton Bernfield for his
legacy-for discovering an “elephant” large enough to allow all
of us to actively pursue our observations for many years to come.

HSPG to syndecan-4 structure

The interaction of cells with their surrounding environment can
contribute to modifications in cell proliferation, migration, mor-
phogenesis and survival. The factors that trigger changes in cell
behavior may be soluble (such as growth factors or chemokines)
or insoluble (components of the extracellular matrix). The mem-
bers of a superfamily that allow cells to interact with both types
of factors are the heparan sulfate proteoglycans (HSPGs). These
localize to either the basement membrane (perlecan and agrin)
or the cell surface (syndecan and glypican families) [7] and
consist of glycosaminoglycan (GAG) chains covalently bound
to a protein core. The heparan sulfate chains are composed of
alternating disaccharide residues (glucuronic acid or iduronic
acid with glucosamine) that are post-translationally modified
by acetylation, epimerization and sulfation in sub-domains that
occur along the length of the carbohydrate chain [8].

The two subfamilies of cell-surface HSPGs are structurally
quite dissimilar. The six members of the glypican family are
glycosylphosphatidylinositol-linked to the cell membrane to
which the GAG attachment sites are closely adjacent. Fourteen
conserved cysteine residues that promote the formation of a
structurally conserved compact and globular shape make up
the N-terminal distal portion of the core protein [9,10].
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The syndecan family (syndecans-1, -2, -3 and -4) is charac-
terized by a core protein that is believed to be highly extended
due to a large number of proline residues [11]. Although the ex-
tracellular domain of each family member is divergent except
at sites of GAG attachment, all four proteins share a highly
conserved transmembrane domain and two constant regions
separated by a unique variable region within the cytoplasmic
domain. At the terminus of the cytoplasmic domain is an invari-
ant amino acid sequence (EFYA) that comprises a binding site
for PDZ (post synaptic density-95, discs-large-1 and zonulin-
1) domain-containing proteins. The first syndecan-binding pro-
tein to be identified, syntenin, contains a tandem repeat of PDZ
domains and both domains act synergistically for optimal syn-
decan binding [12,13]. Studies indicate that syntenin is asso-
ciated with cellular membranes, localizing to sites of nascent
cell-cell contact as well as early sites of cell-substrate adhe-
sion and endocytic vesicles [14,15]. Its prominent distribution
in many subcellular compartments suggests that it may serve
to promote the correct recycling or localization of receptor and
cytoskeletal-associated proteins [14,15]. CASK/LIN-2, another
PDZ domain-containing protein, is a member of the membrane-
associated guanylate kinase family that has been shown to bind
both syndecans and the actin/spectrin binding protein 4.1 indi-
cating that it may act as a scaffolding protein that localizes pro-
teins to the proper cell membrane domain [16]. Indeed, expres-
sion of CASK during the postnatal development of the rat brain
shifts from an axonal distribution (where it colocalizes with
syndecan-3) to a somatodendritic distribution that corresponds
with syndecan-2 expression [17,18]. Synectin was isolated as a
syndecan-4 binding protein and found to be widely distributed
in tissues and adherent cell lines [19]. Immunoprecipitation
experiments demonstrated an indirect association of protein ki-
nase C-α (PKC-α) with synectin, presumably via syndecan-4
acting as a linker, suggesting that a signaling complex contain-
ing all three proteins may exist in vitro. Interestingly, activation
of PKC by phorbol myristate acetate (PMA) induces expression
of synectin in U937 suspension cells as well as an adherent phe-
notype, and transfection of synectin in ECV304 cells results in
impaired migration in in vitro wound healing assays [19]. The
most recent protein to be isolated, synbindin, does not contain
any classical PDZ domains though a stretch of 60 amino acids
near the N-terminus is homologous to several PDZ domain-
containing proteins [20]. Binding of synbindin to syndecan-2
restricts its localization to dendritic spines where it may play
a role in membrane trafficking in postsynaptic sites [20]. The
extensive overlap of these proteins for a binding site on synde-
can family members suggests that a higher level of regulation
must exist to prevent inappropriate signaling events from occur-
ring. Indeed, the various syndecans as well as their potentially
interacting PDZ-containing partners seem to be limited by the
cell-specific coordinated expression or sub-cellular localization
of both [15,18,20].

Structural specificity of each syndecan family member is
conferred by the extracellular domain and the unique variable

region located within the short cytoplasmic domain. The extra-
cellular domain of the syndecan-4 core protein contains a cell-
binding region (corresponding to amino acids 56-109 of the
mouse protein) that mediates fibroblast attachment and cannot
be competed for by other family members [21,22]. Intracel-
lularly, syndecan-4 has been shown to specifically bind two
cytoplasmic proteins. Syndecan-4 binds PKC-α through the in-
termediary phosphatidylinositol-4,5-bisphosphate at the vari-
able region [23–26] and the cytoplasmic protein syndesmos
through both the variable and membrane-proximal constant re-
gions [27]. Although syndesmos binding also incorporates one
of the constant regions shared by all four syndecans, it does not
ligate syndecans 1–3 indicating the contributory importance of
the variable region for binding.

Syndecan-4 expression

Syndecan expression patterns are highly regulated in tissues
and during development. Although most cells express more
than one form of syndecan, stereotypically syndecan-1 is the
predominant form of epithelial cells, syndecan-2 of fibroblasts
and syndecan-3 of neural tissue. Syndecan-4 is unique in that
it is the most ubiquitious of all the syndecans although it is
expressed at lower levels [9,28–31].

Expression of syndecan-4 has been found in all stages of em-
bryonic development and in most adult tissues [32,33] though it
is not necessary for viability [6]. Beta-galactosidase expression
driven by the syndecan-4 promoter in syndecan-4 null mouse
embryos indicates that syndecan-4 is expressed in vertebrae,
ribs, skull base, hair follicles, whiskers, salivary glands, kidney,
lung, heart and urinary bladder [32]. Adult tissue expresses high
levels of syndecan-4 in liver, kidney and lung while the heart
and brain show moderate expression levels [33,34].

Syndecan-4 has been shown to act as an immediate-early
gene in smooth muscle cells following changes in mechanical
stress [35]. Cells exposed to cyclic strain for increasing lengths
of time display a rapid upregulation of syndecan-4 mRNA. In
addition, a change in its subcellular distribution and enhance-
ment of its shedding from the cell surface is also observed. This
modification is correlated with an increase in cell motility sug-
gesting that syndecan-4 localized to the plasma membrane acts
as a negative regulator of smooth muscle cell migration.

Alterations in syndecan-4 expression are associated with
woundhealing. Studies have documented increases in its cell-
surface expression in response to exposure to the proline-rich
antimicrobial peptide PR-39 [36,37] which induces changes in
the rate of cell motility [38,39]. The syndecan-4 extracellular
domain is shed from the cell surface and this activity is upreg-
ulated in acute dermal wound fluid by a metalloprotease which
is sensitive to a tissue inhibitor of metalloprotease-3 (TIMP-3)
following stimulation by PKC, plasmin, thrombin or epider-
mal growth factor [40,41]. The shed syndecan-4 ectodomain
has been shown to serve as an effector in maintaining the pro-
teolytic balance in the inflammatory environment by binding
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proteases and protecting them from protease inhibitors [42].
Muscle satellite cells, which repair damaged skeletal muscle
tissue, express syndecan-4 [43]. Inhibition of GAG synthesis
attenuates satellite cell activation, proliferation and differenti-
ation suggesting that syndecan-4 may help regulate signaling
events associated with muscle cell regeneration [43]. A poten-
tial role of syndecan-4 in healing has also been demonstrated
following myocardial infarction. Syndecan-4 expression is in-
creased in response to hypoxia in cardiac myocytes [44,45] and
is localized to the repair region of damaged cardiac tissue [46].

Collectively, these studies suggest that syndecan-4 is impor-
tant in combating physiological stresses and/or maintaining
homeostasis. Our data from recently generated syndecan-4-
deficient mice confirm this [6]. Mice null for the syndecan-
4 core protein are viable, fertile and show no overt morpho-
logical defects. However, upon subjecting the mice to various
physiological stresses a phenotypic deficiency is uncovered.
Syndecan-4 null mice exhibit a delay in the rate of healing of
excisional wounds and a defect in angiogenesis of the granu-
lation tissue characterized by an alteration in the size of the
infiltrating blood vessels. Dermal fibroblasts isolated from the
syndecan-4 knockout mice migrate slower than their wildtype
counterparts in in vitro wound healing studies suggesting that
cell motility is adversely affected by the loss of syndecan-4.

Renal function studies demonstrated increased mortality
in syndecan-4 null mice following κ-carrageenan induced
obstructive nephropathy [47], see accompanying article by
Ishiguro et al. Examination of the syndecan-4 deficient mice
following treatment indicated a substantial increase in blood
urea nitrogen levels, dilation of renal tubules and degenera-
tion of the inner medulla. Lipopolysaccharide-induced septic
shock also increased the mortality of syndecan-4 null mice
[48], see accompanying article by Ishiguro et al. Both sys-
tolic blood pressure and left ventricular fractional shortening
were greatly reduced and inhibition of IL-1 β production by
transforming growth factor-β (TGF-β) was impaired, indi-
cating a role for syndecan-4 in promoting survival following
lipopolysaccharide-induced sepsis.

Syndecan-4 and focal adhesions

Syndecan-4 is the only syndecan family member that localizes
to focal adhesion sites in fibronectin-adherent cells [49,50]. Its
specific role in cell adhesion was unclear until our subsequent
research demonstrated that fibroblasts adherent to the cell-
binding domain of fibronectin (which contains only the RGD
integrin binding site) will generate focal adhesions and actin
stress fibers following incubation with antibodies to the extra-
cellular domain of syndecan-4 [51]. Furthermore, the syndecan-
4 dependent formation of focal adhesions and stress fibers
acts via a Rho-dependent mechanism [51]. Interestingly, lack
of syndecan-4 signaling (due to adhesion only to the cell-
binding domain) stimulates cell entry into a caspase-mediated
apoptotic pathway [52] suggesting that ligation of syndecan-4
to fibronectin contributes to cell survival.

Figure 1. Syndecan-4 signaling modulates focal adhesion sta-
bility. (Left side) Clustering of syndecan-4 activates PKC-α and
also promotes syndesmos localization to the plasma membrane.
PKC-α activation enhances the interaction between syndesmos
and paxillin thereby stabilizing focal adhesions. (Right side)
Syndecan-4 signaling increases the phosphorylation of FAK at
tyrosine-397 through a Rho-dependent mechanism. Activation
of FAK inhibits focal adhesion stability by facilitating turnover.
How these two pathways are temporally regulated is currently
unknown.

Syndecan-4-mediated stress fiber and focal adhesion forma-
tion could potentially be due to changes elicited either by the
heparan sulfate chains or the protein core. GAG chains from
syndecan-4 and glypican-1 exhibit some minor structural dif-
ferences but both bind to the Hep II domain of fibronectin sim-
ilarly [53]. Studies which have generated syndecan-glypican
chimeras to assess the relative contributions of either the GAG
chains or the protein core have demonstrated that signals elicited
by syndecan ligation cannot be mimicked by glypican [54,55]
implying that signaling events are transduced through the pro-
tein core. In support of this, our studies utilizing both parental
CHO-K1 cells and the derived CHO-745 cells, that lack xy-
losyltransferase which is necessary for transferring the initial
xylose residue needed to initiate GAG chain addition, show
increased focal adhesion and stress fiber formation following
transfection of the syndecan-4 core protein [56]. Transfection
of syndecan-4 constructs containing a partial or full deletion of
the cytoplasmic domain into CHO-K1 cells results in a decrease
in stress fiber organization and focal adhesion formation [57].
These data imply that a direct interaction between the cyto-
plasmic domain of syndecan-4 and other cytoplasmic signaling
components must occur. Indeed, we have found that syndecan-
4 binds selectively to the cytoplasmic protein syndesmos and
over-expression of syndesmos enhances cell spreading [27]. Re-
cently we have shown that syndesmos also binds the focal ad-
hesion adaptor protein paxillin [58] indicating a mechanism by
which syndecan-4 may be linked to focal adhesion-associated
machinery (Figure 1).
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Syndecan-4 and cell migration

Fibroblasts isolated from syndecan-4 null mice will develop
focal adhesions and actin stress fibers when plated on a
fibronectin substrate ([6,59], see accompanying article by
Ishiguro et al.). This result indicates that a compensatory mech-
anism (presumably another syndecan family member) exists
to generate focal adhesions and stress fibers in the absence
of syndecan-4. Activation of the specific syndecan-4 mediated
pathway in the syndecan-4 null fibroblasts does not stimulate
focal adhesion and stress fiber formation [59]. This indicates
that syndecan-4 still plays a role in focal adhesion formation,
although it may serve a specialized function in this process.

Syndecan-4 serves not only to promote the formation of fo-
cal adhesions but also may facilitate their turnover. We have
found that syndecan-4 null fibroblasts migrate more slowly in
in vitro wound healing assays compared with their wildtype
counterparts [6]. Recently lack of syndecan-4 has been shown
to correspond with a reduction in the phosphorylation level
of focal adhesion kinase (FAK) tyrosine-397 [60]. Fibroblasts
generated from FAK null embryos have demonstrated that FAK
expression is required for focal adhesion turnover [61] and that
phosphorylation of tyrosine-397, in particular, is necessary for
optimal cell migration [62]. Syndecan-4 mediated phosphory-
lation of FAK is dependent on the activity of the small GTPase
Rho. The levels of GTP-bound Rho are significantly dimin-
ished in syndecan-4 null fibroblasts suggesting that syndecan-4
ligation either activates Rho or maintains it in an active confor-
mation [60].

Given these data, the story of syndecan-4 mediated migra-
tion is not just a simple “on” (migratory phenotype) versus
“off” (stationary phenotype) scenario. Not only does the loss of
the syndecan-4 gene diminish cell migration, overexpression of
both the full-length or cytoplasmically deleted syndecan-4 core
protein in CHO-K1 cells also impairs migration [57]. These re-
sults suggest that under basal conditions an optimal level of cell
surface syndecan-4 is required for efficient cell migration. Thus
too much syndecan-4 generates an enhanced adhesive pheno-
type that prevents migration while loss of syndecan-4 results in
the failure of cytoplasmic signaling mechanisms to be activated
thus impairing focal adhesion turnover (Figure 2). Other stud-
ies point to syndecan-4 acting to enhance or inhibit regulated
cell migration. Blockage of syndecan-4 ligation by tenascin-C
increases glioblastoma and breast carcinoma cell migration on
fibronectin [63]. Transfection of syndecan-4 full-length or of
a chimera containing the syndecan-4 cytoplasmic domain en-
hances migration and tubule formation in ECV304 endothelial
cells [55]. In neutrophils, lymphocytes and monocytes, where
syndecan-4 acts as an antithrombin receptor [39,64], ligation
of antithrombin III to syndecan-4 inhibits chemokine medi-
ated chemotaxis while enhancing antithrombin III directed cell
migration [64,65]. The selective cellular response to migration
following ligation of syndecan-4 (as in the case of the peripheral
blood leukocytes) implies that syndecan-4 initiated intracellular
signaling events do not act solely in a linear manner but have

Figure 2. Theoretical model of effect of syndecan-4 on cell
migration. Optimal cell migration occurs in the presence of a
“normal” level of cell-surface syndecan-4. Too little (Null) or
too much (Over-express) diminishes the ability of the cell to
efficiently migrate as described in the text.

the capability to influence other receptor-mediated signaling
pathways.

Syndecan-4 and PKC

Cell spreading and focal adhesion formation not only relies
on syndecan-4 mediated Rho GTPase activity but also on the
activation of PKC [66]. Although studies demonstrated that
both PKC and syndecan-4 localize to cell-matrix adhesion sites
[49,67], neither study linked the two molecules into a sin-
gle signaling pathway. Definitive proof that PKC regulated
syndecan-4 localization to focal adhesions was demonstrated
when syndecan-4 was observed to redistribute to the focal adhe-
sions of quiescent fibroblasts following treatment with phorbol
myristate acetate [50]. Subsequently PKC and syndecan-4 have
been shown to be intimately associated. Syndecan-4 binds PKC-
α, through the binding intermediary phophatidyl inositol-4,5-
bis phosphate at the variable region in the cytoplasmic domain
[23,25]. Ligation to syndecan-4 potentiates PKC-α activity and
reduces the requirement for calcium [23,24,26]. Interestingly,
monomeric syndecan-4 is not capable of potentiating PKC-α
activity. Peptides made of the syndecan-4 variable region will
self-oligomerize and the degree of oligomerization parallels the
ability of the peptides to activate PKC-α [25]. Peptides made to
the full cytoplasmic domain of syndecan-4 do not form higher-
level oligomers unless incubated in the presence of phophatidyl
inositol-4,5-bis phosphate [25].

The capability of syndecan-4 to potentiate PKC-α activity
is not without regulation. PKC-dependent activation of a tyro-
sine kinase increases the shedding of syndecan-4 from the cell
surface [41]. This matrix metalloprotease dependent process
cleaves the proteoglycan at the juxtamembrane region, gener-
ating a soluble effector that maintains all extracellular binding
attributes [40,41]. Increased loss of syndecan-4 is associated
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with cellular responses to stress (i.e., hyperosmolarity, heat
shock and ceramide treatment) [41] indicating a potential role
of syndecan-4 in helping to return to a balanced homeostatic
state following physiological disruption.

Horowitz and Simons [68] demonstrated that phosphoryla-
tion of serine-183 on the syndecan-4 cytoplasmic domain re-
duced the ability of syndecan-4 to oligomerize and to poten-
tiate PKC-α activity without diminishing its ability to bind to
the kinase. Analysis of the location of serine-183 in relation
to the phophatidyl inositol-4,5-bis phosphate binding site sug-
gested that phosphorylation of this serine residue interferes with
the binding affinity of syndecan-4 for phophatidyl inositol-4,5-
bis phosphate [68]. Further examination indicated that another
PKC isoform, PKC-δ, is responsible for phosphorylating serine-
183 [69].

Given that all of these data indicate a close and complex re-
lationship between syndecan-4 and PKC, many researchers are
now addressing what possible roles they play within the cell.
The slowly emerging answers are as convoluted as the path-
way itself. The association of PKC activation with both focal
adhesion formation and the localization of syndecan-4 to more
established adhesion sites, and not nascent contacts, indicates
that these molecules may act to maintain cell-matrix adhesions.
In support of this, we have shown that the syndecan-4 binding
protein syndesmos also binds the focal adhesion adaptor protein
paxillin upon PKC activation [58]. Cells isolated from paxillin
null embryos exhibit delayed cell spreading and abnormal focal
adhesion formation [70,71] whereas syndesmos enhances cell
spreading, focal adhesion and actin stress fiber formation when
overexpressed [27]. Thus a likely scenario could be that cluster-
ing of syndecan-4 leads to localization of syndesmos to the cell
periphery and the activation of PKC which would subsequently
enhance the association of syndesmos with paxillin facilitating
cell spreading and focal adhesion formation. This pathway is
separate from the likely role of syndecan-4 in the turnover of
focal adhesions, as PKC activation did not increase the level of
phosphorylation of FAK tyrosine-397 [60] (Figure 1).

The mechanism by which this pathway is initiated may be
through the FGF-2 receptor. Incubation of cells with FGF-
2 results in the activation of a serine/threonine phosphatase
type 1/2A which dephosphorylates syndecan-4 at serine-183
[68,72]. Dephosphorylation allows for the subsequent acti-
vation of PKC-α by syndecan-4/phophatidyl inositol-4,5-bis
phosphate as described above [68,69,72]. Endothelial cells in-
cubated with FGF-2 show an increase in cell migration, prolifer-
ation and tubule formation [72] that can be inhibited upon trans-
fection of the cells with either a constitutively active PKC-δ, a
dominant negative PKC-α or a syndecan construct mutated at
the phophatidyl inositol-4,5-bis phosphate binding site [69,72].

Syndecan-4 and growth factors

Both extracellular and cell-surface heparan sulfate proteogly-
cans have been shown to bind heparin-binding growth factors

(such as the fibroblast growth factor (FGF) superfamily,
hepatocyte growth factor (HGF) and heparin-binding isoforms
of vascular endothelial growth factor (VEGF)). In addition to
protecting growth factors from proteolysis and thermal denatu-
ration [73,74], proteoglycan ligation can help direct the binding
of growth factors to their primary receptors [75–80] and, there-
fore, regulate potential downstream physiological responses
[65,79,81–85]. Adding to the complexity, HSPGs that normally
enhance growth factor signaling when membrane-bound may
act in an inhibitory manner when soluble [86,87].

Many studies have been devoted to elucidating the role of
syndecan-4 in FGF-2-mediated signaling. Syndecan-4 binds
FGF-2 directly and increases the affinity of FGF-2 for FGF-
receptor-1 when co-immobilized with the receptor in cell-free
binding assays [79,88]. Richardson et al. [89] demonstrated
that FGF-2 mediated proliferation is dependent on cell den-
sity in stromal fibroblasts and this correlates with the level
of syndecan-4, and not of the FGF-receptor, expressed on the
cell surface. ECV304 endothelial cells transfected with vari-
ous glypican-1 and syndecan-4 constructs increase the number
of low-affinity FGF-2 binding sites on the cell surface but only
respond physiologically to FGF-2 (enhanced growth and migra-
tion) when the transfection is of cDNA for full-length syndecan-
4 or a construct containing the syndecan-4 cytoplasmic domain
[55].

The ability of syndecan-4 to cluster, in the absence of fi-
bronectin ligation, may also be dependent on FGF-2 bind-
ing. Whereas syndecan-4 is present in non-raft fractions of
the cell membrane under quiescent conditions, it translocates
to lipid rafts upon FGF-2 induced clustering [90]. These lipid
rafts do not contain caveolae, as designated by the absence
of co-localization with the marker caveolin-1, but the authors
noted a parallel relocalization of syndecan-4 and caveolin-1
[90]. The purpose of the coordinated movement is currently un-
clear. However, heparin-binding growth factor receptors such
as those for FGF, platelet-derived growth factor, and vascu-
lar endothelial growth factor are found in caveolae [91–93] so
syndecan-4 may serve to transport the ligand to its primary
receptor. Alternatively, localization to membrane subdomains
may allow syndecan-4 to interact with additional signaling com-
ponents. PKC-α translocates to caveolar compartments upon
activation whereby it can stimulate downstream signaling path-
ways [94,95]. Mutation of either the phophatidyl inositol-4,5-
bis phosphate binding site or PDZ domain on syndecan-4 results
in an attenuation of FGF-mediated signaling events due to a de-
crease in the syndecan-4 dependent activation of PKC-α [72].
Therefore, the localization of syndecan-4 to areas adjacent to
caveolae may facilitate its ability to bind and activate PKC-α
upon dephosphorylation of serine-183.

Studies have not yet explored the FGF-2 signaling pathway in
syndecan-4 null mice but one study has evaluated FGF-2 medi-
ated nitric oxide release in cardiac myocytes isolated from trans-
genic mice carrying rat syndecan-4 cDNA [35]. The presence
of the syndecan-4 transgene enhanced nitric oxide production
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and vasodilation following FGF-2 stimulation compared with
controls [35]. Interestingly, myocytes do not normally generate
syndecan-4 so their responsiveness would be dependent on the
presence of proteoglycans shed from the surface of neighboring
endothelial cells. Shedding of syndecan-4 is accelerated during
the process of wound repair [40] and, in this regard, would serve
as a paracrine modulator of FGF-2 regulated signaling.

Conclusion

Many recent studies have helped in the elucidation of the role
of syndecan-4 in focal adhesion formation, cell migration and
growth factor signaling. The answer to its “indispensability”
is still unknown. This enigmatic molecule seems to serve as
a mechanism to facilitate physiological responses to various
stresses under acute conditions as well as to enhance or “make
more efficient” more routine signaling pathways. Given that, its
presence may not lead to the activation of the same downstream
effectors and its absence under static conditions is not detrimen-
tal. The characterization of the recently generated syndecan-4
null mice will help further the understanding of this complex
molecule.
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